美国研究人员开创高效的交通管制和可持续能源解决方案
盖世汽车讯 据外媒报道,宾夕法尼亚大学嵌入式计算与集成系统工程研究中心的团队展开突破性研究工作,有望改变城市交通管理,对可持续城市生活和减缓气候变化产生影响。这项研究由电气与系统工程系(ESE)博士生Nandan Tumu领导,其导师是计算机与信息科学系(CIS)和ESE系教授兼PRECISE中心创始成员Rahul Mangharam。
当今机器学习方法的一个主要障碍是样本复杂性,即学习算法需要多少数据才能达到适当的性能水平。数据越多,所需的能量就越多,对环境的影响就越大。
为了解决这个问题,Tumu探索更为有效的方法,并发现基于物理知识和受约束的学习可以大幅减少大量采样需求。通过将这种方法与共形预测相结合,Tumu找到了一种有效可靠地控制复杂系统的方法。
这种基于物理知识和受约束的学习与共形预测的创新结合,有望释放更大型多代理系统的潜力,例如无人机机队或无人驾驶汽车车队,以及电网和风电场等基础设施。
声明:本网转发此文章,旨在为读者提供更多信息资讯,所涉内容不构成投资、消费建议。文章事实如有疑问,请与有关方核实,文章观点非本网观点,仅供读者参考。
行业资讯
精彩推荐
- 浮光影动 涟漪再起
- 劳斯莱斯专属车身定制车型“浮影”又一至臻新作翩...
- 领先科技赋能 专属动
- 近日,2022年欧马可超级卡车“欧康杯”全国云...
- 选混动车型 享域锐·
- 2022年,混动车市场开启爆发模式。 ...